WebHilbert space: [noun] a vector space for which a scalar product is defined and in which every Cauchy sequence composed of elements in the space converges to a limit in the space. WebFormally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. In mathematics, Hilbert …
Hilbert space - HandWiki
WebMar 24, 2024 · On a measure space , the set of square integrable L2-functions is an -space. Taken together with the L2-inner product with respect to a measure , (1) the -space forms a Hilbert space. The functions in an -space satisfy (2) and (3) (4) (5) (6) (7) The inequality ( 7) is called Schwarz's inequality . The basic example is when with Lebesgue measure. In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function … See more Motivating example: Euclidean vector space One of the most familiar examples of a Hilbert space is the Euclidean vector space consisting of three-dimensional vectors, denoted by R , and … See more Prior to the development of Hilbert spaces, other generalizations of Euclidean spaces were known to mathematicians and physicists. In particular, the idea of an abstract linear space (vector space) had gained some traction towards the end of the 19th century: … See more Pythagorean identity Two vectors u and v in a Hilbert space H are orthogonal when ⟨u, v⟩ = 0. The notation for this is u … See more Bounded operators The continuous linear operators A : H1 → H2 from a Hilbert space H1 to a second Hilbert space H2 are See more Lebesgue spaces Lebesgue spaces are function spaces associated to measure spaces (X, M, μ), where X is a set, M is a See more Many of the applications of Hilbert spaces exploit the fact that Hilbert spaces support generalizations of simple geometric concepts like projection and change of basis from their usual finite dimensional setting. In particular, the spectral theory of continuous See more Direct sums Two Hilbert spaces H1 and H2 can be combined into another Hilbert space, called the (orthogonal) direct sum, and denoted consisting of the set of all ordered pairs (x1, x2) where xi ∈ … See more grand chief afn
Hilbert Space Brilliant Math & Science Wiki
WebJan 13, 2024 · David Hilbert was one of the greatest mathematician of the 19th and 20th century. He was a child prodigy and received his PhD at 23. He worked with Einstein to mathematically formulate equations... WebThere are many topologies that can be defined on B(X) besides the ones used above; most are at first only defined when X = H is a Hilbert space, even though in many cases there are appropriate generalisations. The topologies listed below are all locally convex, which implies that they are defined by a family of seminorms.. In analysis, a topology is called strong if it … chinese billionaire liu weihong